skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "MacMahon, David_H E"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We describe archival observations and analysis of the HD 110067 planetary system using the Green Bank Telescope (GBT) as part of the Breakthrough Listen search for technosignatures. The star hosts six sub-Neptune planets in resonant orbits, and we tune the drift rate range of our search to match the properties of the system derived by Luque et al. Our observations cover frequencies from 1 to 11.2 GHz, using the GBT’s L, S, C, and X-band receivers, to an equivalent isotropic radiated power limit of ∼3 × 10^12 W. No technosignatures were found, but this unusual system remains an interesting target for future technosignature searches. 
    more » « less
  2. Caballero identified the star 2MASS 19281982-2640123 as a potential Sun-like star from which the WOW! signal could have originated. We conducted a search for artificial narrowband (2.79 Hz/1.91 Hz), drifting (±4 Hz s^−1) technosignatures from this source using the turboSETI pipeline, from 1–2 GHz, using simultaneous multi-telescope observations with both the Robert C. Byrd Green Bank Telescope and the newly refurbished Allen Telescope Array on 2022 May 21. Both telescope observations had an overlap of 580 s. While blind searches using radio telescopes have been conducted in the general field of view in which the WOW! signal was first detected, this is the first time a targeted search has been done. No technosignature candidates were detected. 
    more » « less
  3. The search for extraterrestrial intelligence at radio frequencies has largely been focused on continuous-wave narrowband signals. We demonstrate that broadband pulsed beacons are energetically efficient compared to narrowband beacons over longer operational timescales. Here, we report the first extensive survey searching for such broadband pulsed beacons toward 1883 stars as a part of the Breakthrough Listen’s search for advanced intelligent life. We conducted 233 hr of deep observations across 4–8 GHz using the Robert C. Byrd Green Bank Telescope and searched for three different classes of signals with artificial (or negative) dispersion. We report a detailed search—leveraging a convolutional neural network classifier on high-performance GPUs—deployed for the very first time in a large-scale search for signals from extraterrestrial intelligence. Due to the absence of any signal-of-interest from our survey, we place a constraint on the existence of broadband pulsed beacons in our solar neighborhood: ≲1 in 1000 stars have transmitter power densities ≳10^5 W Hz^−1 repeating ≤500 s at these frequencies. 
    more » « less
  4. A line of sight toward the Galactic Center (GC) offers the largest number of potentially habitable systems of any direction in the sky. The Breakthrough Listen program is undertaking the most sensitive and deepest targeted SETI surveys toward the GC. Here, we outline our observing strategies with Robert C. Byrd Green Bank Telescope (GBT) and Parkes telescope to conduct 600 hr of deep observations across 0.7–93 GHz. We report preliminary results from our survey for extraterrestrial intelligence (ETI) beacons across 1–8 GHz with 7.0 and 11.2 hr of observations with Parkes and GBT, respectively. With our narrowband drifting signal search, we were able to place meaningful constraints on ETI transmitters across 1–4 GHz and 3.9–8 GHz with EIRP limits of ≥4 × 10^18 W among 60 million stars and ≥5 × 10^17 W among half a million stars, respectively. For the first time, we were able to constrain the existence of artificially dispersed transient signals across 3.9–8 GHz with EIRP ≥1 × 10^14 W/Hz with a repetition period ≤4.3 hr. We also searched our 11.2 hr of deep observations of the GC and its surrounding region for Fast Radio Burst–like magnetars with the DM up to 5000 pc cm^−3 with maximum pulse widths up to 90 ms at 6 GHz. We detected several hundred transient bursts from SGR J1745−2900, but did not detect any new transient bursts with the peak luminosity limit across our observed band of ≥10^31 erg s^−1 and burst rate of ≥0.23 burst hr^−1. These limits are comparable to bright transient emission seen from other Galactic radio-loud magnetars, constraining their presence at the GC. 
    more » « less